
SAND-2002-3276
Unlimited Release

Printed October 2002

An Evaluation of the Convergence
Properties of a Parallel Genetic

Programming Method

Dianne C. Barton
Critical Infrastructure Surety Department

R. J. Pryor
Computational Biology and Evolutionary Computing Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0321

Abstract
Genetic programming is a technique that produces as output the source code of another

computer program. The program is evolved with rules of natural selection that seek to find the
best solution to a particular problem. This report presents the results of tests run on eight
different GP method parameters and shows how variations in the value of these parameters affects
the time taken to converge on the correct solution. The problem used to test the method is the
MAX problem which proved to be a simple, straight forward, and easy approach for evaluating
GP efficiency. Testing the method on the MAX problem can help to develop an optimum search
for problems with unknown solutions. This paper presents the results of this study.

 4

Intentionally Left Blank

 5

Contents

Introduction .. 7

Genetic Programming .. 7

Program Representation ... 8

Genetic Operators .. 9
Selection Operator ...10
Reproduction Operator ..10
Crossover Operator ..11
Mutation Operator ...11

Solution Procedure... 14

The MAX Problem.. 16

Parameter Evaluation Study... 18

Results ... 19
Genetic Operators..19
Global-Best Tree Sharing ..20

Conclusions... 24

References... 25

Figures
Figure 1 – Parse Tree Representation ... 8
Figure 2 – Flow of genetic operation selection procedure.. 10
Figure 3. Illustration of the crossover operator – cutpoints for each of the parent trees are shown by the arrows. 11
Figure 4 – Illustration of the limb replacement mutation operation – cutpoint is shown by the arrow.................. 12
Figure 5 – Illustration of the node swapping mutation operation... 13
Figure 6 – Flow of mutation operation selection procedure. .. 14
Figure 7. Solution procedure used. .. 15
Figure 8 – Representation of Parallel Process Procedure. .. 16
Figure 9 – Illustration of the base tree structure required to find the optimal value for MAX {+,*},{0.5}, Depth >

4... 17
Figure 10 – An optimal tree for MAX depth 4, {+,*}, {0.5}... 17
Figure 11 – Solution time for variation of the number of trees (SELECTNUM) chosen in the tournament selection

process. .. 20
Figure 12- Solution Time for variation of mutation probability (PROBMU).. 21
Figure 13– Solution Time for variation of crossover probability (PROBCR). .. 21
Figure 14 - Solution Time for variation of limb mutation probability (PROBLB).. 22
Figure 15 - Solution Time for variation of node mutation probability (PROBND)... 22
Figure 16 - Solution Time for variation of iteration that the global best tree is accepted by the process nodes

(USEGLOBITER). ... 23
Figure 17 - Solution Time for variation of the probability that the global best tree is sent to the process nodes

(PROBSND). .. 23
Figure 18 - Solution Time for variation of the wait time before the global best tree is sent to the process nodes

(SENDTIME). .. 24

 6

Tables

Table 1 – GP Parameters and Values Tested .. 18

Table 2 – Calculation Parameters... 18

Table 3 – Standard Values for GP Method Variables Used in the Tests.......................... 19

 7

An Evaluation of the Convergence Properties of a Parallel Genetic
Programming Method

Introduction
Genetic programming (GP) described in Koza (1992) is an approach to automatic

programming in which computers are used to write programs. GP uses an evolutionary search
technique to find a highly fit computer program in the space of possible computer programs for
solving a particular problem. It is a useful approach because it may find novel solutions that
might be overlooked in human designed solutions. This is because computers opportunistically
attempt to solve the problem without the constraint of human preconceptions about an
appropriate solution path. The technique has been used by Pryor (1998) to develop behavior for
tracking robots, by Barton (2002) to develop multiple pricing strategies for an agent based
economic model, and by Pryor and Barton (2002) to find manuevering behaviors for an unmanned
aerial vehicle glider (UAV).

An important aspect of designing a successful GP method is in developing optimum settings
for the GP search parameters. This is a difficult problem when the solution space is unknown.
Therefore, we conducted tests of a GP method on the MAX problem and measured the time to
converge on the correct solution as the GP parameters changed. Testing the method on the MAX
problem can help to develop an optimum search for problems with unknown solutions. It is
simple, straight forward, and easy to conduct. This paper presents the results of this study.

Genetic Programming

GP is a technique that produces as output the source code of another computer program. GP
uses the ideas of biological evolution to solve a complex problem by employing the principles of
natural selection, where the most effective programs survive and compete or cross-breed with
other programs, to continually approach the best solution to a particular problem.

GP starts with an initial population of randomly generated computer programs composed of
functions and terminals appropriate to the problem domain. The size of the population varies
based on the problem but thousands of individuals or programs are typical. Each program that is
generated is evaluated for its ability to solve the prescribed task and is assigned a numerical score
or fitness for how well it has achieved this goal. Some programs will be very effective at
accomplishing the prescribed task and some will not. The higher the fitness, the better the
individual. A new population is created by performing genetic operations including reproduction,
crossover and mutation on the individual programs that make up the starting population. The old
population is then discarded and the process is repeated using the new population. One iteration
of this loop is referred to as a generation.

 8

The following sections describe in detail the tree representation, the genetic operators, and the
solution procedures for the GP method that was used in this study. The input variables that were
tested and the input parameters that were used as part of this study are also described in the
appropriate sections.

Program Representation

Programs can be graphically depicted as a rooted point labeled tree with ordered branches.
Program “(a * b) – c + (d * e)” would be represented as the tree shown in Figure 1. The basic
building block of a tree is called a node, with all nodes in the tree having the same fixed structure.
A node can either be a function or a terminal. A function node performs a mathematical or
Boolean operation and generally has branches that point to other nodes. The number of branches
depends on the kind of function, e.g., add, subtract, multiply. A terminal node normally returns a
value, does not have any branches, and terminates that section of the tree. The root node is
counted as level 0. The tree shown in Figure 1 is three levels deep, nine nodes, four function
nodes, and five terminal nodes.

Figure 1 – Parse Tree Representation

Two parameters are used to control the size of a tree, with size determined by the number of
levels. The parameter MINTREESIZE specifies the minimum number of levels in a tree, while
the parameter MAXTREESIZE specifies the maximum number of levels in a tree. These
parameters are used in the following way. If the level number is less than MINTREESIZE, the
recursive function that builds the tree will only select from the function node kinds, e.g., add,

+

- *

dc e*

ba

+

- *

dc e*

ba

 9

subtract. This constraint ensures that at least one more level will be added. If the level number is
equal to MAXTREESIZE, the recursive function will only select from the terminal node kinds.
This constraint ensures that no more levels are added to this part of the tree because terminal
nodes do not have any branches. For all other level values, a random selection is made.

Genetic Operators

Principles of natural selection are used to create a new generation of individual computer
programs from the current population of programs. Three genetic operations are used to create
the new generation: reproduction, crossover, and mutation. Each operator works independently
of the other operators and the usage of each operator is determined by its assigned probability.
The reproduction, crossover, and mutation operators use a selection operation to determine which
individuals in the current population will be acted upon.

The population size POPSIZE of each generation remains the same. To create the next
generation, a loop over all individual programs in the populations is started. Within this loop, a
random number between 0 and 1 is drawn to determine how to replace that individual in the new
population. This random number is compared to three probabilities. The probability, PROBMU,
determines the percentage of times that the mutation operation is used and the probability,
PROBCR, determines the percentage of times that the crossover operation is used. The
difference between PROBMU and/or PROBCR and 1.0 is the probability that the reproduction
operation is used.

More specifically in our GP method, if the random number chosen at the start of the loop is
less than parameter PROBMU, then the individual program is altered by the mutation operation.
If the random number is greater than PROBMU but less than PROBCR then the individual
program is altered by the crossover operation. If the random number is greater than PROBCR,
then the individual is replaced through the reproduction operation. When the required number of
new individuals is created, the loop is terminated. Figure 2 is a depiction of the flow of the
operation selection procedure. PROBMU and PROBCR are two of the parameters evaluated in
this study.

 10

Figure 2 – Flow of genetic operation selection procedure

Selection Operator
The selection operator is used to identify individuals in the current population for

reproduction, crossover, or mutation operations. A tournament algorithm is used, which is easy
to implement and is relatively fast. The algorithm works in the following way. A SELECTNUM
number of individuals are randomly selected from the population. The fitness values of these
individuals are compared, and the individual with the highest fitness is the winner of the
tournament; that is, the one selected. If two individuals are needed, as in the case of crossover,
the tournament is repeated.

SELECTNUM is one of the parameters evaluated in this study. Note that the parameter

SELECTNUM affects the distribution of individuals selected, thus increasing the value of
SELECTNUM moves this distribution toward more elite individuals in the population. For
example, if the value of SELECTNUM is equal to the population size, only the most fit individual
will be selected. Reducing the value of SELECTNUM improves diversity by allowing more
individuals to take part in forming the next generation.

Reproduction Operator
The reproduction operator uses the selection operator to select a new individual. Thus the

operation involves selecting a SELECTNUM number of individuals. The fitness of these
individuals is compared and the computer program with the highest fitness is selected for
reproduction. This individual program is copied exactly from the current population into the new

For all individual programs in the population {

}

Choose RVALUE (a random number between 0 and 1)

RVALUE

Mutation
Operation

Crossover
Operation

Reproduction
Operation

< PROBMU

> PROBMU
< PROBCR

> PROBCR

For all individual programs in the population {

}

Choose RVALUE (a random number between 0 and 1)

RVALUE

Mutation
Operation

Crossover
Operation

Reproduction
Operation

< PROBMU

> PROBMU
< PROBCR

> PROBCR

 11

population. The reproduction operation does not create anything new in the population of
computer programs.

Crossover Operator
The crossover operation creates a new computer program by selecting two parent programs

using the selection operator. Next, for each selected individual, a cutpoint is randomly selected
among the nodes of its tree. Finally, the new tree is created by removing the cutpoint node and all
nodes below it from the first tree and replacing them with the cutpoint node and all nodes below it
from the second tree. Figure 3 illustrates this last step. The new tree, which was created by
splicing together two trees in the current population, is then placed in the next generation. Unlike
reproduction, the crossover operation creates new individuals in the population. By recombining
randomly chosen parts of somewhat effective programs, new programs may evolve that are even
fitter in solving the problem.

Figure 3. Illustration of the crossover operator – cutpoints for each of the parent
trees are shown by the arrows.

Mutation Operator
The mutation operation allows new individuals to be created by randomly changing the values

of functions and/or terminals in a selected individual parse tree. Two different mutation styles are
tested in this study. In the first type of mutation operation, limb replacement, mutation occurs by
choosing a point in the tree at random and generating a new limb at that point to some random

+

- *

dc e*

ba

+

- *

+z w+

yx yx
+

- *

c e*

ba

*

+ w

yx

Tree 1 Tree 2

New Tree

+

- *

dc e*

ba

+

- *

+z w+

yx yx
+

- *

c e*

ba

*

+ w

yx

Tree 1 Tree 2

New Tree

 12

depth not greater than the maximum allowed tree depth, i.e. MAXTREESIZE. This is graphically
depicted in Figure 4. In the second type of mutation operation, node swapping, each point in the
tree may be altered by a specified probability. The probability that the swap will occur is
determined by the probability, PROBNS. Therefore, not all nodes will necessarily be swapped.
The node swapping operation is depicted in Figure 5. Terminals are swapped with alternate
terminals from the terminal set and functions are swapped with functions with the same number of
arguments from the function set. PROBNS is one of the parameters evaluated in this study.

Figure 4 – Illustration of the limb replacement mutation operation – cutpoint is
shown by the arrow.

+

- *

dc e*

ba

Original Tree

+

- -

c*

ba

*

* n

ml

New Tree

*

ba

+

- -

c*

ba

*

* n

ml

New Tree

*

ba

Limb Replacement
cutpoint

 13

Figure 5 – Illustration of the node swapping mutation operation.

The probability, PROBLB, determines the percentage of times that the limb replacement

mutation operation is used versus the percentage of times that the node swapping operation is
used. The process is illustrated in Figure 6. First a tree is selected from the current population
using the selection operator. Next, a random number is chosen between 0 and 1.0. If this random
number is less than PROBLB, then limb mutation is performed on the selected tree; if it is greater,
then node swapping mutation is performed. If the node swapping mutation operation is selected,
then each node is swapped with the probability PROBND. PROBLB and PROBND are two of
the parameters evaluated in this study.

+

- -

c*

ba

*

* n

ml

Original Tree

*

ba
+

- +

b*

ba

*

+ n

ml

*

ba

Mutated Tree

Node Swapping

+

- -

c*

ba

*

* n

ml

Original Tree

*

ba
+

- +

b*

ba

*

+ n

ml

*

ba

Mutated Tree

Node Swapping

 14

 Figure 6 – Flow of mutation operation selection procedure.

Solution Procedure

Figure 7 illustrates the basic solution procedure. The production of the initial generation of
programs is done by randomly generating a rooted, point labeled parse tree from a set of functions
and terminals. The fitness of each individual in the population is then determined, followed by the
initiation of a loop over generations. Within the generation loop, the next generation is created
and the fitness of each individual within that generation is calculated. A test is then made to
determine whether any individual meets the convergence criterion. If an individual is found, the
loop terminates and the calculation ends. If no individual is found, the calculation continues.

Choose RVALUE2 (a random number between 0 and 1)

for all nodes in the tree {

}

RVALUE2

Limb Mutation Node Mutation

< PROBLB > PROBLB

Choose RVALUE3 (random number between 0 and 1)

RVALUE3 Mutate NodeNo Mutation
< PROBND> PROBND

Choose RVALUE2 (a random number between 0 and 1)

for all nodes in the tree {

}

RVALUE2

Limb Mutation Node Mutation

< PROBLB > PROBLB

Choose RVALUE3 (random number between 0 and 1)

RVALUE3 Mutate NodeNo Mutation
< PROBND> PROBND

 15

Basic Solution Procedure

Done

Initialize first generation

Selection

Crossover, Mutation, Reproduction

Calculate Fitness

Problem converged ?
yes

no

Loop over offsprings
C

re
at

e
ne

xt
 g

en
er

at
io

n

Calculate Fitness

Figure 7. Solution procedure used.

The calculations were done on the CPLANT massively parallel computer at Sandia National
Laboratories. Running on the parallel computer requires some slight modifications in the basic
solution procedure to allow sharing of the “global-best” tree among processors. A processor is
identified by its number, whose range is 0 to the number of processors allocated minus 1. In our
implementation, process 0 is the master process which checks for convergence, collects the best
trees from the other processors, determines which is the global-best tree, and handles sending this
tree to the calculation processors. Each of the remaining processors run the same genetic
program and run independently of the other processors.

At the end of each generation, each processor determines the best tree in its population and
sends it to processor 0 where the globally best tree is determined. This send occur only if the
local best tree has a larger fitness than the global-best it had received earlier. Processor 0 then
determines if a new global-best tree is found and then broadcasts the new global-best tree to all
processors. Accordingly, each processor decides whether the global-best tree will be employed in
creating the next generation, using a rule that depends on the generation number. If a processor
decides to use the global-best tree, the processor inserts that tree into the current generation to
replace the tree that had the smallest fitness. In this way, the global-best tree is included in all of
the genetic operations that produce the next generation.

The reason for not using the global-best tree all the time is to maintain diversity in the entire
population. The convergence rate is proportional to a measure of the diversity. If all processors
used the global-best tree in each generation, it would not be long before all of the trees would
look much the same, and the rate of improvement would be reduced.

Figure 8 illustrates how the global-best tree is shared between the master processor and the
calculation processors. The master processor receives the best trees from all of the calculation
processors and then determines the current global-best tree. If the last time that a global-best tree
was sent to all of the calculation processors is greater than the value of the parameter

 16

SENDTIME, then the tree is sent. The tree will be sent to all of the calculation processors with
PROBSND probability. Thus not all of the calculation processors will necessarily receive the
global-best tree. The calculation processors will accept the global-best tree into its population of
trees only if the current iteration is greater than the value USEGLOBALITER. These three
parallel process variables were tested in this study.

Figure 8 – Representation of Parallel Process Procedure.

The MAX Problem

Gathercole and Ross (1996) introduced the MAX problem to evaluate the standard GP
crossover operator. The MAX problem uses a given function set and terminal set; and for a
maximum tree depth, seeks the largest possible value. There are several advantages of the MAX
problem for evaluating setup parameters for a GP method. The MAX problem has a known
optimal value but can be a difficult problem for GP to solve. The results are known quickly and
the solution space is easy to visualize. The problem can be varied with different function or
terminal sets and changing the maximum tree depth allowed.

In this paper we used the function set {*,+} and one terminal of value 0.5. The root node
counts as depth 0. For this version of the problem, in order to produce the largest value for tree
depths of four or greater, the GP must build a tree where leaf terminals are combined with +

Send Global Best Tree
(if time since last

send > SENDTIME)

Receives Best Tree

Evaluate for
Convergence

Build New Generation

Send Best Tree

Receive Global
Best Tree

End Problem

Use
Global Best Tree
if Generation >

USEGLOBALITER

Send to process
with PROBSND

probability

Master Processor Calculation Processors

yes

no

 17

nodes to assemble subtrees with the value of 2.0. These must then be connected with either a +
or * to give a higher level subtree value of 4.0. All nodes higher than this basic set must be *.
The optimal base subtrees for this problem are shown in Figure 9.

Figure 9 – Illustration of the base tree structure required to find the optimal value
for MAX {+,*},{0.5}, Depth > 4.

A generic optimal tree of depth 4, is depicted in Figure 10. For a given depth D, the

maximum possible tree value is 42D-3
, where D >= 3. Thus the optimum value for the tree in

Figure 10 where D is 4 (the root node counts as depth 0) is 16.

Figure 10 – An optimal tree for MAX depth 4, {+,*}, {0.5}

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Add AddAdd Add Add Add Add Add

Add Add Add Add

Add
Or

Multiply

Add
Or

Multiply

Multiply

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Add AddAdd Add Add Add Add Add

Add Add Add Add

Add
Or

Multiply

Add
Or

Multiply

Multiply

0.5 0.5

+

0.5 0.5

+

+

0.5 0.5

+

0.5 0.5

+

+

Subtree value
= 2.0

+ or * Tree value = 4.0

Optimal base tree structure for MAX, {+,*},{.5}

0.5 0.5

+

0.5 0.5

+

+

0.5 0.5

+

0.5 0.5

+

+

Subtree value
= 2.0

+ or * Tree value = 4.0

Optimal base tree structure for MAX, {+,*},{.5}

 18

Parameter Evaluation Study

The parameters and the range of values that were evaluated are listed in Table 1. All
parameters are described in the previous sections. The GP calculation parameters that were used
in the study are listed in Table 2. The calculation parameters include variables like population
size, maximum tree depth, and initial tree depth settings. The calcuation parameters were the
same for all runs.

Table 1 – GP Test Parameters and Values

Parameter Description Range of Values
SELECTNUM Number of individuals taking part in tournament selection 4 - 40
PROBCR Crossover probability .1 - 1.0
PROBMU Mutation probability .1 - 1.0
PROBLB Limb mutation probability .1 - 1.0
PROBND Change node probability .1 - 1.0
USEGLOBALITER First iteration that the global best tree is accepted 0 - 450
PROBSND Probability that the global best tree is sent to a process .1 - 1.0
SENDTIME Minimum time in between best tree send 0 - 135

Table 2 – Calculation Parameters

Parameter Description Value
MAXNODES Maximum number of nodes 512
MAXTREEDEPTH Maximum depth of final solution (root node = 0) 8

MAXINITDEPTH
Maximum depth of initial population of trees (root
node = 0) 5

MININITDEPTH
Minimum depth of initial population of trees (root node
= 0) 3

ANSWER Solution to the MAX problem 18446744073709552000
POPSIZE Population size 100
PROCESS Number of nodes used on CPLANT 9

The computations were performed on Sandia’s massively parallel CPLANT computer. The

MAX problem was solved 500 times for each paramter value that was tested. Each new run was
started with a new random number seed. The value used for all the variable parameter input
values is shown in Table 3. These values were used for all of the problems except for the runs
that tested PROBCR. For PROBCR the PROBMU value was set to 0, so the mutation operator
was not used and the impact of crossover versus reproduction could be evaluated.

 19

Table 3 – Standard Values for GP Method Variables Used in the Tests

Parameter Standard Value
SELECTNUM 4
PROBCR 0.9
PROBMU 0.5 or * 0.1 for PROBCR
PROBLB 0.5
PROBND 0.2
USEGLOBALITER 50
PROBSND 0.5
SENDTIM 30

The problem was considered to be solved when the correct answer, ANSWER, for the MAX
problem was discovered by one of the calculation processors and sent to the master processor.
The problem was ended at this time and the solution time was recorded. The average solution
time and standard deviation for the 500 runs are plotted for each input value in Figures 11 – 19.

Results

The following graphs display the average solution time and the standard deviation of the value for
the 500 test runs. The first five graphs are parameters that control the genetic operations and the
last three graphs are parameters that control the sharing of solutions across processors.

Genetic Operators
The results for the number of trees, SELECTNUM, used in the tournament selection process

(Figure 11), show that the convergence time is little affected by the percentage of trees used in the
tournament after about 10% of the population. The population size used in this test was 100. The
selection procedure plays an important part in all of the genetic operations in this GP method.

The results of varying the probability of the mutation and crossover operations shows the
interrelationship between the use of these two operations with the reproduction operation. Our
results show that convergence time increases as the probability of mutation increases (Figure 12).
When mutation becomes the primary genetic operation, i.e. when PROBMU is greater than .9, a
solution for the MAX problem of depth 8 could not be found even after hours of searching.
However, we also found that crossover without any mutation, i.e. when PROBMU = 0, can not
solve the MAX problem of depth 8. Gathercole and Ross 1996 report similar results and the
failure of the crossover operation alone in finding a solution for the MAX problem with depths
greater than 6.

To test the relative role of reproduction and crossover, the mutation operator, PROBMU was
set to a minimum value of 0.1, and PROBCR was varied from .2 – 1.0. The results of these tests
are displayed in Figure 13. When PROBCR is low, the reproduction operator becomes the
principal genetic operator in building the next generation. Reproduction does not create new
trees but improves the fitness of the population through selection. Our results indicate that
convergence time is slowed when reproduction is the predominant genetic operator. However,

 20

when some reproduction is part of the genetic operations mix i.e., when PROBMU is .1 and
PROBCR is .8 - .9, convergence improves by about 3% as compared to when no reproduction is
used, i.e., when PROBMU is .1 and PROBCR is 1.0.

The results for the two different styles of mutation, limb or node, are shown in Figures 14 and
15. The results indicate that the style of mutation used has little effect on convergence time as
long as limb mutation is not used exclusively (i.e. when PROBLB = 1.0). In addition, node
mutation operation is best deployed on only a small number of the tree nodes (i.e. when
PROBND is about .1).

Global-Best Tree Sharing
The parameters that control the sharing of the global-best tree across processors show little

impact on convergence time (Figures 15 – 18). When the global best is shared at the earliest
possible iteration (USEGLOBITER = 0), the convergence time is only slightly faster than sharing
after 450 generations. When the probability that the calculation processors receive the global-best
tree is low (PROBSND = .1) convergence time is only slightly improved over the possibility that
all of the processors receive the global-best tree all of the time (PROBSND = 1). Convergence
time is actually improved for smaller delays (SENDTIME < 15) for this problem, meaning that an
earlier sharing of the global-best tree improves the efficiency of finding the correct solution.
Gathercole and Ross, 1996, suggest that GP finds the MAX problem difficult because it quickly
finds suboptimal solutions which contain + nodes near the root of the tree. Although sharing the
global-best tree early in the problem reduces the diversity of the population, it helps to keep the
calculation processors from concentrating on these suboptimal trees. This may not always be the
best solution for other problems without many suboptimal solutions.

Figure 11 – Solution time for variation of the number of trees (SELECTNUM)

chosen in the tournament selection process.

0

10

20

30

40

50

60

70

0 10 20 30 40

Number Selected

So
lv

e
Ti

m
e

 21

Figure 12- Solution Time for variation of mutation probability (PROBMU).

Figure 13– Solution Time for variation of crossover probability (PROBCR).

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

Probability

So
lv

e
Ti

m
e

(s
ec

on
ds

)

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Crossover Probability

So
lv

e
Ti

m
e

(s
ec

on
ds

)

 22

Figure 14 - Solution Time for variation of limb mutation probability (PROBLB).

Figure 15 - Solution Time for variation of node mutation probability (PROBND).

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

Node Mutation Probability

So
lv

e
Ti

m
e

(s
ec

on
ds

)

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Limb Mutation Probability

So
lv

e
Ti

m
e

(s
ec

on
ds

)

 23

Figure 16 - Solution Time for variation of iteration that the global best tree is

accepted by the process nodes (USEGLOBITER).

Figure 17 - Solution Time for variation of the probability that the global best tree
is sent to the process nodes (PROBSND).

35

40

45

50

55

60

65

70

0 100 200 300 400

Iteration Number

So
lv

e
Ti

m
e

(s
ec

on
ds

)

35

40

45

50

55

60

65

70

0 0.2 0.4 0.6 0.8 1

Probability

So
lv

e
Ti

m
e

(s
ec

on
ds

)

 24

Figure 18 - Solution Time for variation of the wait time before the global best tree
is sent to the process nodes (SENDTIME).

Conclusions

We have shown that the MAX problem is a useful and simple method to find the best settings
for GP method parameters. The results of this study showed that steps taken to limit sharing of
the global best tree had little effect on the results of the study. However, convergence time was
strongly affected by the choice of genetic operation and the manner in which the genetic
operations intermixed. Utilizing the MAX problem to tune the GP method parameters is a useful
exercise and one that can help improve the efficiency of problem solving with GP.

35

40

45

50

55

60

65

70

0 10 20 30 40 50

Time Delay

So
lv

e
Ti

m
e

(s
ec

on
ds

)

 25

 References

Barton, Dianne C. Using Genetic Programming to Develop Pricing Strategies for a Multi-Agent
Economic Model. SAND2002-3677. Albuquerque, NM: Sandia National Laboratories, 2002.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley, 1989.

Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of
Michigan Press, 1975.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press, 1992.

Pryor, Richard J. Developing Robotic Behavior Using a Genetic Programming Model. SAND98-
0074. Albuquerque, NM: Sandia National Laboratories, 1998.

Pryor, Richard J., and Barton, Dianne. Developing Maneuvering Behaviors for a Glider UAV
Using a Genetic Programming Model Albuquerque, NM: Sandia National Laboratories, (Draft
report, September 2002).

Distribution

 1 0321 W. J. Camp, 9200
 1 0451 S. G. Varnado, 6500
 1 0188 C. Meyers, 1030
 1 0451 J. Nelson, 6515
 40 1109 R. J. Pryor, 9212
 40 1109 Dianne Barton, 6541
 1 0129 N. Singer, 12620
 1 9018 Central Technical Files, 8945-1
 2 0899 Technical Library, 9616
 1 0612 Review and Approval Desk, 9612, For DOE/OSTI

